Diterpenoids from the Flowers of Rhododendron molle

Shao-Nong Chen, Hua-Ping Zhang, Li-Quan Wang, Guan-Hu Bao, and Guo-Wei Qin*
Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China

Received January 20, 2004
Five new grayanane-type diterpenoids, rhodomolleins IX (1), X (2), XI (3), XII (4), and XIII (5), a new kalmane-type diterpenoid, rhodomollein XIV (6), and seven known diterpenoids, grayanotoxin II, rhodomolleins I and XIX, rhodojaponins II, III, and VI (7), and kalmanol, were isolated from the flowers of Rhododendron molle. The structures of $\mathbf{1 - 6}$ were elucidated by spectroscopic methods, including 1D and 2D NMR experiments.

The diterpenoids from poisonous Ericaceae species are based on several specialized carbon skeletons with highly oxygenated functionalities. Some of them have shown significant physiological properties, including potent acute toxicity in mammals ${ }^{1,2}$ and antifeedant, growth inhibitory, and insecticidal activities. ${ }^{3,4}$ These diterpenoids occur mainly in the genera Kalmia, Leucothoe, Lyonia, Pieris, and Rhododendron. Their structures are in four types: (1) the grayanane-type with a $5 / 7 / 6 / 5$ ring system; (2) the leucothane-type with a 6/6/6/5 ring system; (3) the 1,5 -seco-grayanane-type with a $10 / 6 / 5$ ring system; and (4) the kalmane-type with a 5/8/5/5 ring system. ${ }^{5}$ It seems that all structural types are biosynthetically related to each other and derived from the ent-kaurane diterpenoids. ${ }^{6}$ Up to the present, the number of this kind of diterpenoid found in the Ericaceae is around 100.

In the course of a search for diterpenoids with structural diversity and biological importance, we have studied the fruits and roots of Rhododendron molle G. Don, a wellknown poisonous folk medicine in China. ${ }^{7-9}$ The flowers of the plant had been previously studied, and several diterpenoids were reported. ${ }^{3}$ Recently, we have reinvestigated the flowers of the plant. This paper describes the isolation and structure elucidation of five new grayananetype diterpenoids, rhodomolleins IX (1), X (2), XI (3), XII (4), and XIII (5) and one new kalmane-type diterpenoid, rhodomollein XIV (6). Also obtained in this isolation were seven known diterpenoids.

The $70 \% \mathrm{EtOH}$ extract of the flowers of R. Molle was partitioned between CHCl_{3} and water. The water-soluble part was subjected to column chromatography on Resin 101 , eluting with $\mathrm{H}_{2} \mathrm{O}, 50 \% \mathrm{EtOH}$, and $95 \% \mathrm{EtOH}$. Guided by the brine shrimp lethality test, ${ }^{10}$ the active $95 \% \mathrm{EtOH}$ fraction was separated by repeated column chromatography on silica gel, Sephadex LH-20, and Lichroprep RP-18 to yield six new diterpenoids, $\mathbf{1 - 6}$, and seven known diterpenoids, namely, grayanotoxin II, ${ }^{11}$ rhodomolleins I and XIX, ${ }^{12}$ rhodojaponins II, ${ }^{13}$ III, ${ }^{3}$ and VI (7), ${ }^{14}$ and kalmanol. ${ }^{5}$

Rhodomollein IX (1), an amorphous powder, exhibited a molecular formula of $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{6}$, as deduced from its HRFABMS and NMR data. The IR spectrum indicated the presence of hydroxyl ($3400 \mathrm{~cm}^{-1}$) and double-bond (1660 cm^{-1}) functionalities. The ${ }^{1} \mathrm{H}$ spectrum of 1 (Table 1) contained signals for three singlet methyls ($\delta 1.57,1.63$, 1.93), four oxygenated methines ($\delta 4.09,4.78,4.98,5.20$),

[^0]
1

$3 \mathrm{R}_{1}=\mathrm{OH} \quad \mathrm{R}_{2}=\mathrm{COCH}_{3}$
4
$5 \mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{COCH}_{3}$
$7 \mathrm{R}_{1}=\mathrm{OH} \mathrm{R}_{2}=\mathrm{OH}$

and two exocyclic olefinic protons ($\delta 4.98,5.05$). Altogether, 20 carbon signals were observed in the ${ }^{13} \mathrm{C}$ NMR (DEPT) spectrum (Table 2), including three methyls, five methylenes (one olefinic at $\delta 103.4$), seven methines (four oxygenated at $\delta 72.3,77.0,81.2,87.1$), and five quaternary carbons (one olefinic at $\delta 156.8$ and two oxygenated at $\delta 78.3,83.5$). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum revealed the presence of the following fragments: $\mathrm{CH}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OH})-$ CH_{2}, and $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}$. These structural features suggested $\mathbf{1}$ is a grayanane-type diterpenoid with six sites of oxygenation. Further studies on the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1 revealed that these data closely resemble those of rhodojaponin VI (7). The obvious difference was that $\mathbf{1}$ has an exocyclic carbon-carbon double bond $\left(\mathrm{H}_{2}-17, \delta 4.98\right.$, 5.05 ; C-16, 17, $156.8 \mathrm{~s}, 103.4$ t) but lacked a quaternary carbon with a β-methyl and an α-hydroxyl like C-16 of 7, suggesting 1 is a $\mathrm{C}-16 / 17$ dehydrated derivative of 7 . This structure was confirmed by HMBC correlations between $\mathrm{C}-17 / \mathrm{H}-15, \mathrm{H}-13 ; \mathrm{C}-16 / \mathrm{H}-14, \mathrm{H}-12$; and $\mathrm{C}-15, \mathrm{C}-13 / \mathrm{H}_{2}-17$. Further HMBC, HSQC, and NOESY experiments enabled full assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ to be

Table 1. ${ }^{1} \mathrm{H}$ NMR Data of Compounds $\mathbf{1 - 7}$ (in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)^{a}$

position	1	2	3	4	5	6	7
1	3.02 d (7.9)	3.12, d (8.0)	3.00 d (7.3)	3.27 d (8.2)	$\begin{aligned} & 3.26 \text { dd (} 4.3, \\ & 11.9 \text {) } \end{aligned}$	3.05 d (4.7)	2.97 d (8.0)
2α					$\begin{aligned} & 2.50 \text { (ddd, } 4.3 \text {, } \\ & 11.9,15.0) \end{aligned}$		
2β	5.20 dd (3.5, 7.9)	5.25 dd (3.7, 8.0)	$\begin{aligned} & 5.17 \mathrm{dd}(4.2, \\ & 7.3) \end{aligned}$	$\begin{aligned} & 5.06 \text { dd }(3.2, \\ & 8.2) \end{aligned}$	$\begin{aligned} & 2.66 \operatorname{td}(4.3, \\ & 15.0) \end{aligned}$	5.27 dd (3.4, 4.7)	5.17 d (3.9, 8.0)
3	4.09 d (3.5)	4.16 d (3.7)	4.24 d (4.2)	4.00 d (3.2)	3.95 t (4.3)	4.19 d (3.4)	4.08 d (3.9)
6	4.78 dd (3.0, 10.0)	4.80 dd (3.1, 9.6)	$\begin{aligned} & 5.86 \text { dd }(4.4, \\ & 10.9) \end{aligned}$	4.86 d (9.4)	$\begin{aligned} & 5.78 \text { dd (4.4, } \\ & 9.2) \end{aligned}$	5.00 d (10.6)	$4.71 \mathrm{~d}(3.6,10.3)$
7α	2.86 dd (3.0, 15.0)	$\begin{aligned} & 2.86 \text { dd (3.6, } \\ & 13.6) \end{aligned}$	$\begin{aligned} & 2.95 \mathrm{dd}(4.4, \\ & 13.4) \end{aligned}$	2.81 d (13.5)	$\begin{aligned} & 2.84 \mathrm{dd}(4.4, \\ & 13.0) \end{aligned}$	2.56 d (14.7)	$\begin{aligned} & 2.87 \text { dd }(3.6, \\ & 13.3) \end{aligned}$
7β	$\begin{aligned} & 2.57 \mathrm{dd}(10.0, \\ & 15.0) \end{aligned}$	$\begin{aligned} & 2.58 \text { (dd, } 9.6, \\ & 13.6 \text {) } \end{aligned}$	$\begin{aligned} & 2.25 \mathrm{dd}(10.9, \\ & 13.4) \end{aligned}$	$\begin{aligned} & 2.08 \mathrm{dd}(9.4, \\ & 13.5) \end{aligned}$	$\begin{aligned} & 2.56 \text { dd (9.2, } \\ & 13.0 \text {) } \end{aligned}$	$\begin{aligned} & 3.00 \mathrm{dd}(10.6, \\ & 14.7) \end{aligned}$	$\begin{aligned} & 2.53 \mathrm{dd}(10.3 \text {, } \\ & 13.3) \end{aligned}$
9	2.31 d (6.3)	2.35 d (7.3)	2.25 d (6.4)	2.43 d (6.6)	2.30 d (4.7)	$\begin{aligned} & 2.80 \text { ddd (} 7.8 \text {, } \\ & 8.7,11.1) \end{aligned}$	2.13 m
11α	2.19 m	2.25 m	2.16 m	1.93 m	2.13 m	2.14 m	2.06 m
11β	1.84 m	1.84 m	1.68 m	1.84 m	1.75 m	1.95 m	1.60, m
12α	2.84 m	2.15 m	2.71 m	2.00 m	2.74 m	1.88 m	2.53 m
12β	1.66 m	1.65 m	1.79 m	1.58 m	1.79 m	1.08 m	1.69 m
13	3.05 brs	2.85 brs	2.59 brs	$\begin{aligned} & 2.98 \mathrm{dd}(6.5, \\ & 9.4) \end{aligned}$	2.69 brs	2.93 t (10.3)	2.58 brs
14	4.98 s	5.21 s	5.20 s	4.78 s	5.16 s	3.43 t (8.9)	5.05 s
15α	2.81 d (17.5)	5.40 s	2.34 d (14.5)	2.38 d (13.9)	2.32 d (14.6)	3.43 s	2.31 d (14.5)
15β	2.67, d (17.5)		2.22 d (14.5)	2.14 d (13.9)	2.21 d (14.6)	3.43 s	2.15 d (14.5)
17	$\begin{aligned} & 4.98,5.05 \\ & \text { each s } \end{aligned}$	1.74 s	1.60 s	1.57 s	1.60 s	1.47 s	1.54 s
18	1.57 s	1.64 s	1.39 s	1.44 s	0.97 s	1.80 s	1.57 s
19	1.63 s	1.67 s	1.63 s	1.67 s	1.61 s	1.92 s	1.62 s
20	1.93 s	2.01 s	1.98 s	$\begin{aligned} & 5.37,5.56, \\ & \text { each s } \end{aligned}$	1.94 s	2.06 s	1.89 s
OAc			2.10 s	2.12 s	2.19 s		

[^1] experiments.

Table 2. ${ }^{13} \mathrm{C}$ NMR Data of Compounds $\mathbf{1 - 7}{ }^{a}$

carbon	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
1	58.1 d	58.1 d	58.9 d	53.0 d	52.2 d	61.2 d	58.2 d
2	81.2 d	81.0 d	79.8 d	82.6 d	35.7 t	80.3 d	80.9 d
3	87.1 d	87.1 d	86.3 d	88.4 d	82.7 d	85.9 d	87.1 d
4	49.2 s	49.3 s	49.3 s	48.5 s	51.6 s	52.0 s	49.3 s
5	83.5 s	84.0 s	82.8 s	82.3 s	83.8 s	85.6 s	83.6 s
6	72.3 d	72.3 d	78.1 d	76.0 d	77.9 d	72.4 d	72.9 d
7	43.6 t	40.9 t	40.3 t	36.8 t	39.6 t	44.4 t	45.4 t
8	50.8 s	55.4 s	52.4 s	50.0 s	52.2 s	83.1 s	52.5 s
9	54.4 d	48.3 d	55.3 d	53.2 d	55.4 d	53.1 d	55.1 d
10	78.3 s	79.3 s	78.1 s	148.6 s	78.1 s	76.0 s	78.9 s
11	22.1 t	22.7 t	22.2 t	23.8 t	22.7 t	29.1 t	22.1 t
12	33.3 t	24.9 t	27.2 t	24.3 t	27.2 t	31.3 t	27.3 t
13	55.1 d	56.1 d	56.6 d	56.2 d	56.8 d	60.7 d	56.4 d
14	77.0 d	80.3 d	78.9 d	79.0 d	78.9 d	54.7 d	79.9 d
15	49.9 t	132.6	60.3 t	62.2 t	60.2 t	53.9 t	60.9 t
16	156.8 s	137.6 d	79.8 s	80.9 s	79.6 s	80.1 s	80.9 s
17	103.4 t	15.6 q	23.9 q	26.0 q	23.9 q	23.7 q	24.1 q
18	26.2 q	26.4 q	25.1 q	25.7 q	23.2 q	25.1 q	26.3 q
19	20.3 q	20.4 q	20.7 q	20.3 q	19.7 q	21.6 q	20.6 q
20	29.5 q	29.5 q	29.6 q	114.2 t	28.5 q	26.0 q	29.6 q
acetyl			21.7 q	21.5 q	21.6 q		
				169.8 s	171.8 s	170.0 s	

${ }^{a}$ In ppm relative to internal TMS run at 125 MHz . Assignments are based on BB, DEPT, HSQC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, and HMBC experiments. The data of $\mathbf{7}$ are given because of their absence in the previous literature.
made. Therefore, $\mathbf{1}$ was deduced as $2 \alpha, 3 \beta, 5 \beta, 6 \beta, 10 \alpha, 14 \beta$ -hexahydroxygrayan-16-ene and has been named rhodomollein IX.

Rhodomollein X (2), an amorphous powder, gave a molecular formula of $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{6}$, the same as that of $\mathbf{1}$, as found from its HRFABMS and NMR data. The IR spectrum showed the presence of hydroxyl ($3420 \mathrm{~cm}^{-1}$) and doublebond ($1630 \mathrm{~cm}^{-1}$) moieties. The ${ }^{1} \mathrm{H}$ spectrum (Table 1) contained signals for three singlet methyls ($\delta 1.64,1.67$, 1.74), one olefinic methyl ($\delta 2.01$), four oxygenated me-
thines ($\delta 4.16,4.80,5.21,5.25$), and one olefinic proton (δ 5.40). The ${ }^{13} \mathrm{C}$ NMR (DEPT) spectrum (Table 2) revealed 20 carbon signals for four methyls, three methylenes, eight methines (four oxygenated at $\delta 72.3,80.3,81.0,87.1$ and one olefinic at $\delta 132.6$), and five quaternary carbons (one olefinic at $\delta 137.6$ and two oxygenated at $\delta 79.3,84.0$). It was obvious that the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 2 were very similar to those of $\mathbf{1}$ and $\mathbf{7}$. The evident difference was that 2 has an intra-annular double bond (H-15, $\delta 5.40$; C-15, C-16, $\delta 132.6 \mathrm{~d}, 137.6 \mathrm{~s}$) instead of an exocyclic double bond in $\mathbf{1}$, suggesting that $\mathbf{2}$ is also a dehydrated derivative of $\mathbf{7}$ and an isomer of 1 . The double bond at $\mathrm{C}-15 / 16$ was deduced by HMBC correlations between $\mathrm{H}_{3}-17 / \mathrm{C}-13, \mathrm{C}-15$, C-16; H-13/C-15, C-16, C-17; H-14/C-15, C-16; and H-15/ C-16, C-17. Further analysis of the NMR data of 2 and from the HMBC, HSQC, and NOESY experiments indicated 2 is a C-15(16) dehydrated derivative of 7 . Thus, 2 was determined to be $2 \alpha, 3 \beta, 5 \beta, 6 \beta, 10 \alpha, 14 \beta$-hexahydroxygrayan15 -ene and has been named rhodomollein X.
Rhodomollein XI (3), an amorphous power, had a molecular formula of $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{8}$, as deduced from its HRFABMS and NMR data. The IR spectrum showed the presence of hydroxyl ($3450 \mathrm{~cm}^{-1}$) and ester carbonyl (1720 cm^{-1}) moieties. The ${ }^{1} \mathrm{H}$ spectrum (Table 1) contained signals for four singlet methyls ($\delta 1.39,1.60,1.63,1.98$), one acetyl methyl ($\delta 2.10$), and four oxygenated methines ($\delta 4.24,5.17,5.20,5.86$). The ${ }^{13} \mathrm{C}$ NMR (DEPT) spectrum (Table 2) revealed 22 carbon signals, including five methyls, four methylenes, seven methines (four oxygenated at δ $78.1,78.9,82.6,86.3$), and six quaternary carbons (one ester carbonyl at $\delta 169.8$ and three oxygenated at $\delta 78.1$, 79.8, 82.8). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum indicated the presence of the following fragments: $\mathrm{CH}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}-$ $(\mathrm{OH}), \mathrm{CH}(\mathrm{OAc})-\mathrm{CH}_{2}$, and $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}$. These structural features suggested that $\mathbf{3}$ is a grayanane-type diter-
penoid with seven sites of oxygenation. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{3}$ were very similar to those of $\mathbf{7}$. The only evident difference was that $\mathbf{3}$ has the resonances due to an additional acetyl group. The downfield shift of H-6 (δ 4.71 in $\mathbf{7}$ to $\delta 5.86$ in $\mathbf{3}$) and C-6 ($\delta 72.9$ in 7 and $\delta 78.1$ in $\mathbf{3)}$ indicated that the acetylation of $\mathbf{3}$ was at C-6. This deduction was confirmed by HMBC correlations between H-6/C-4 and the ester carbonyl carbon. Thus, 3 was established as 6β-acetoxyl- $2 \alpha, 3 \beta, 5 \beta, 14 \beta, 16 \alpha$-pentahydroxygrayanane and has been named rhodomollein XI.

Rhodomollein XII (4), an amorphous power, gave a molecular formula of $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{7}$, as deduced from its HRFABMS and NMR data. The IR spectrum showed the presence of hydroxyl ($3400 \mathrm{~cm}^{-1}$), ester carbonyl (1710 cm^{-1}), and double-bond ($1640 \mathrm{~cm}^{-1}$) moieties. The ${ }^{1} \mathrm{H}$ spectrum (Table 1) contained signals for three singlet methyls ($\delta 1.44,1.57,1.67$), one acetyl methyl ($\delta 2.12$), four oxygenated methines ($\delta 4.24,4.78,4.86,5.06$), and two olefinic protons ($\delta 5.37,5.56$). The ${ }^{13} \mathrm{C}$ NMR (DEPT) spectrum (Table 2) revealed 22 carbon signals, including four methyls, five methylenes (one olefinic at δ 114.2), seven methines (four oxygenated at $\delta 76.0,79.0,82.6,88.4$), and six quaternary carbons (one ester carbonyl at $\delta 171.8$, one olefinic at $\delta 148.6$, and two oxygenated at $\delta 80.9,82.3$). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum indicated the presence of the following fragments: $\mathrm{CH}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OAc})-$ CH_{2}, and $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}$, the same as those in 3. These structural features suggested 4 is a grayanane-type diterpenoid with six sites of oxygenation. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 4 were very similar to those of 3 . By comparison of the NMR data of 4 and 3 , the only evident difference was that 4 had an exomethylene $\left(\mathrm{H}_{2}-20, \delta 5.37\right.$, 5.56 ; C-10, C-20, $\delta 148.6 \mathrm{~s}, 114.2 \mathrm{t}$) instead of a methyl and an oxygenated quaternary carbon in 3 . This suggested 4 is a C-10/20 dehydrated derivative of 3 . The exomethylene at C-10/20 was confirmed by the HMBC correlations between C-20/H-1, H-9 and between $\mathrm{C}-1, \mathrm{C}-9 / \mathrm{H}_{2}-20$. Thus, 4 was determined to be 6β-acetoxyl- $2 \alpha, 3 \beta, 5 \beta, 14 \beta, 16 \alpha$ -pentahydroxygrayan-10 (20)-ene and has been named rhodomollein XII.

Rhodomollein XIII (5), an amorphous powder, was assigned a molecular formula of $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{7}$, as deduced from its HRFABMS and NMR data. The IR showed characteristic absorptions for hydroxyl ($3430 \mathrm{~cm}^{-1}$) and ester carbonyl ($1718 \mathrm{~cm}^{-1}$) moieties. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 (Table 1 and Table 2) contained signals for five singlet methyls ($\delta_{\mathrm{H}} 0.97,1.60,1.61,1.94,2.19 ; \delta_{\mathrm{C}} 19.7,21.6,23.2$, $23.9,28.5$), three oxygenated methines ($\delta_{\mathrm{H}} 3.95,5.16,5.78$; $\delta_{\mathrm{C}} 77.9,78.9,82.7$), two oxygenated quaternary carbons (δ_{C} $78.1,83.8$), and one ester carbonyl ($\delta_{\mathrm{C}} 170.0$). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum revealed the presence of the following fragments: $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH}), \mathrm{CH}(\mathrm{OAc})-\mathrm{CH}_{2}$, and $\mathrm{CH}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}$. The above data were consistent with 5 being a grayanane-type diterpenoid. Further investigation showed that the ${ }^{13} \mathrm{C}$ NMR data of 5 were in good agreement with those of 6-acetylgrayanotoxin III, ${ }^{15}$ a derivative of grayanotoxin III prepared by acetylation. However, 5 (6 β -acetyloxy- $3 \beta, 5 \beta, 10 \alpha, 14 \beta, 16 \alpha$-pentahydroxygrayanane) is reported here from natural origin for the first time. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 5 were assigned as shown in Tables 1 and 2 , respectively.

Rhodomollein XIV (6), an amorphous powder, was assigned a molecular formula of $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{7}$, as deduced from its HRFABMS and NMR data. The IR spectrum showed the presence of hydroxyl ($3417 \mathrm{~cm}^{-1}$) and carbon-carbon double-bond ($1637 \mathrm{~cm}^{-1}$) functionalities. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) contained signals for four singlet
methyls ($\delta 1.47,1.80,1.92,2.06$) and three oxygenated methines ($\delta 4.19,5.00,5.27$). In the ${ }^{13} \mathrm{C}$ NMR (DEPT) spectrum (Table 2), 20 carbon signals were observed, including four methyls, four methylenes, seven methines (three oxygenated at $\delta 72.4,80.3,85.9$), and five quaternary carbons (four oxygenated at $\delta 76.0,80.1,83.1,85.6$). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum revealed a fragment with a fivemembered ring system $\left(\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right)$ and the more common fragments $\mathrm{CH}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})$ and CH -$(\mathrm{OH})-\mathrm{CH}_{2}$, as found in grayanane-type diterpenoids. The five-membered ring moiety differed from ring A or ring D of any known grayanane-type diterpenoids, but conformed to ring C of kalmanol ($3 \beta, 5 \beta, 6 \beta, 8 \alpha, 10 \alpha, 16 \alpha$-pentahydroxykalmane) and its analogue rhodomollein XV ($5 \beta, 6 \beta, 8 \alpha, 10 \alpha,-$ 16α-pentahydroxy-3-oxokalmane), which were both isolated from the same plant. ${ }^{7}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 6 were very similar to those kalmanol. The major difference was that an oxygenated methine (H-2, $\delta 5.27 ; \mathrm{C}-2, \delta 80.3$) in 6 replaced the signals of a methylene in kalmanol. Further study showed that the $\mathrm{CH}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})$ fragment of 6 replaced the $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})$ fragment (ascribed to C-1, $-2,-3$) in ring A of kalmanol. Additionally, the NMR spectra showed that the other units (rings B, C, D moiety) were nearly identical to that of kalmanol. This suggested 6 is 2 -hydroxykalmanol. The HMBC correlations between $\mathrm{H}_{3}-20 / \mathrm{C}-1, \mathrm{C}-9, \mathrm{C}-10 ; \mathrm{H}-1 / \mathrm{C}-5, \mathrm{C}-10, \mathrm{C}-20 ; \mathrm{H}-2 / \mathrm{C}-1, \mathrm{C}-3$, C-5, C-10; H-3/C-18; and $\mathrm{H}_{3}-18, \mathrm{H}_{3}-19 / \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$ confirmed the above deduction. The α-orientation of the 2-hydroxyl group was based on the additional observations. First, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data in the five-membered ring A of $\mathbf{6}$ were similar to those of $\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{6}$, and $\mathbf{7}$, but quite different from those of rhodomollein XVIII ${ }^{7}$ and rhodomoside B^{9} (with a 2β-hydroxyl moiety in the five-membered ring A), which were isolated from the same plant. Second, NOESY correlations were observed between $\mathrm{H}_{3}-18 / \mathrm{H}-1$, $\mathrm{H}-3, \mathrm{H}-6, \mathrm{H}-19$; H-1/H-3, H-6; and H-2/H $\mathrm{H}_{3}-20$. Thus, 6 was determined to be $2 \alpha, 3 \beta, 5 \beta, 6 \beta, 8 \alpha, 10 \alpha, 16 \alpha$-heptahydroxykalmane and has been named rhodomollein XIV. Kalmanetype diterpenoids have a unique class of framework with a 5/8/5/5 (trans/trans/cis) tetracyclic system and occur only in poisonous species of the Ericaceae. Rhodomollein XIV (6) is the third example of a kalmane-type diterpenoid found so far.

It has been reported that treatment of grayanotoxin III with acetic acid in methanol or with anhydrous copper sulfate in dioxane produces a series of dehydrated derivatives, including grayanotoxins II [10(20)-dehydrate], VI [15-(16)-dehydrate], VII [10(20),15(16)-dehydrate], and VIII [10(20), 16(17)-dehydrate]. ${ }^{16}$ In general, dehydration occurs biosynthetically as enzyme-catalyzed reactions, similar to these chemical reactions, and leads to considerable structural diversity. The coexistence of grayanotoxins II, III, VI, VII, and VIII in the poisonous shrub Leucothoe grayana Max. has been observed. ${ }^{17}$ Thus, the coexistence of the new diterpenoids 1, 2, and 4 and the known rhodomolleins I and XIX with 7 in the same plant is reasonable from a biogenetic point of view. Also, from the results of our ongoing study, it is clear that both the fruits and flowers of Rhododendron molle are rich in grayanane-type diterpenoids. ${ }^{7}$

Experimental Section

General Experimental Procedures. Optical rotations were measured on a Perkin-Elmer MC-241 polarimeter. IR spectra were measured on a Nicolt-Magna 750 spectrophotometer. The NMR spectra were recorded on Bruker AM-400 or 500 NMR spectrometers. Mass spectra were recorded using a MAT-241 mass spectrometer.

Plant Material. The flowers of R. molle were collected in Yingshan, Hubei Province, People's Republic of China, and identified by Prof. Zhi-Wei Wang of the Department of Pharmacognosy, Shanghai Medical University. A voucher specimen (No. SIMM97091203) has been deposited at the Herbarium of Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

Extraction and Isolation. The air-dried and powdered flowers of R. molle (5 kg) were extracted with $70 \% \mathrm{EtOH}(3 \times$ $25 \mathrm{~L})$ three times at room temperature. The combined residue, after removal of solvent, was partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The water-soluble phase was applied to a resin 101 column (2 kg) and eluted with $\mathrm{H}_{2} \mathrm{O}, 50 \% \mathrm{EtOH}$, and 95% EtOH, sequentially. The pooled 95% fractions (40 g) were subjected to passage over a silica gel column (200-300 mesh, 800 g) and eluted with $\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}-\mathrm{MeOH}(20: 1)$ [part B], $\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)$ [part C], $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (5:1) [part D], and MeOH [part E], respectively. Repeated column chromatography on silica gel H, Sephadex LH-20, and Lichroprep RP18 afforded rhodojaponin II (300 mg) and grayanotoxin II (11 mg) from part B; rhodojaponin III (200 mg), kalmanol (20 mg), and rhodomolleins I (19 mg), XI ($\mathbf{3}, 200 \mathrm{mg}$), XIII ($5,12 \mathrm{mg}$), IX (1, 10 mg), X (2, 8 mg), XII (4, 6 mg$)$, XIV (6, 10 mg), and XIX (20 mg) from part C; and rhodojaponin VI (7, 200 mg) from part D, respectively.

Rhodomollein IX (1): amorphous powder, mp 133-135 ${ }^{\circ} \mathrm{C}$, $[\alpha]^{25} \mathrm{D}-32.8^{\circ}(c 0.24, \mathrm{MeOH})$, IR (KBr) $v_{\text {max }} 3400,2950,1660$, 1380, $1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$), see Tables 1 and 2; FABMS m/z $369[\mathrm{M}+1]^{+}$; HRFABMS m/z 369.2232 (calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{6}, 369.2280$).

Rhodomollein X (2): amorphous powder, $\mathrm{mp} 223-224^{\circ} \mathrm{C}$, $[\alpha]^{25}{ }_{\mathrm{D}}-11.0^{\circ}(c 0.45, \mathrm{MeOH})$; IR (KBr) $v_{\max } 3420,2950,1630$, 1410, 1380, 1124, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$), see Tables 1 and 2; FABMS $m / z 369[M+1]^{+} ;$HRFABMS m / z 369.2244 (calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{6}, 369.2280$).

Rhodomollein XI (3): amorphous powder, mp $170-172^{\circ} \mathrm{C}$, $[\alpha]^{25} \mathrm{D}-24.5^{\circ}(c 0.89, \mathrm{MeOH})$; IR (KBr) $v_{\text {max }} 3450,2940,1720$, $1370,1250,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$), see Tables 1 and 2; FABMS m/z 429 [M + 1] ${ }^{+}$; HRFABMS m / z 429.2449 (calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{8}, 429.2488$).

Rhomollein XII (4): amorphous powder, $\mathrm{mp} 75-77^{\circ} \mathrm{C}$, $[\alpha]^{25}{ }_{\mathrm{D}}-14.5^{\circ}(c 1.09, \mathrm{MeOH}) ; \mathrm{IR}(\mathrm{KBr}) \nu_{\max } 3400,2940,1710$, 1640, 1375, 1259, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$),
see Tables 1 and 2; FABMS $m / z 411[M+1]^{+} ;$HRFABMS m / z 411.2317 (calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{7}, 411.2382$).

Rhodomollein XIII (5): amorphous powder, mp above 255 ${ }^{\circ} \mathrm{C},[\alpha]^{25}{ }_{\mathrm{D}}-14.7^{\circ}$ (c 0.16, MeOH); IR (KBr) $v_{\text {max }} 3430,2960$, 1760, 1718, 1375, 1263, $1049 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$), see Tables 1 and 2; FABMS $\mathrm{m} / \mathrm{z} 413[\mathrm{M}+1]^{+}$; HRFABMS m/z 413.2523 (calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{7}, 413.2539$).

Rhodomollein XIV (6): amorphous powder, mp 133-135 ${ }^{\circ} \mathrm{C},[\alpha]^{25}{ }_{\mathrm{D}}-17.1^{\circ}(c \quad 0.08, \mathrm{MeOH})$; IR (KBr) $\nu_{\text {max }} 3417,2940$, 1637, 1450, 1383, 1108, 1080, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$), see Tables 1 and 2; FABMS m/z $387[\mathrm{M}+1]^{+}$; HRFABMS m/z 387.2348 (calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{7}, 387.2383$).

Acknowledgment. This work was supported by a grant from National Natural Science Foundation of China (No. 30170104).

References and Notes

(1) Hikino, H.; Ohta, T.; Ogura, M.; Ohizumi, Y.; Konno, C.; Takemoto, T. Toxicol. Appl. Pharmacol. 1976, 35, 303-310.
(2) Masutani, T.; Seyama, I.; Narahashi, T.; Iwasa, J. J. Pharmacol. Exp. Ther. 1981, 217, 812-819.
(3) Klocke, J. A.; Hu, M. Y.; Chiu, S. F.; Kubo, I. Phytochemistry 1991, 30, 1797-1800.
(4) Hu, M. Y.; Klocke, J. A.; Chiu, S. F.; Kubo, I. J. Econ. Entomol. 1993, 86, 706-711.
(5) Burke, J. W.; Doskotch, R. W.; Ni, C. Z.; Clardy, J. J. Am. Chem. Soc. 1989, 111, 5831-5833.
(6) Masutani, T.; Hamada, M.; Kawano, E.; Iwasa, J. Agric. Biol. Chem. 1981, 45, 1281-1282.
(7) Li, C. J.; Wang, L. Q.; Chen ,S. N.; Qin, G. W. J. Nat. Prod. 2000, 63, 1214-1217.
(8) Li, C. J.; Liu, H.; Wang, L. Q.; Jin, M. W.; Chen, S. L.; Bao, G. H.; Qin, G. W. Acta Chim. Sin. 2003, 61, 1153-1156.
(9) Bao, G. H.; Wang, L. Q.; Cheng, K. F.; Feng, Y. H.; Li, X. Y.; Qin, G. W. Planta Med. 2003, 69, 434-439.
(10) Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Jacobson, L. B.; Nichols, D. E.; Mclaughlin, J. L. Planta Med. 1982, 45, 31-34.
(11) Kaiya, T.; Sakakibara, J. Chem. Pharm. Bull. 1985, 33, 4637-4639.
(12) Chen, C. Y.; Pan, X. F.; Lian, H. S. Acta Chim. Sin. 1992, 50, $237-$ 243.
(13) Liu, Z. G.; Pan, X. F. Youjuhuaxue 1990, 10, 187-190.
(14) Nishida, R.; Fukami, H.; Iriye, R.; Kumazawa, Z. Agric. Biol. Chem. 1990, 54, 2347-2352.
(15) Ohta, T.; Hikino, H. Org. Magn. Reson. 1979, 12, 445-449.
(16) Terai, T. Nippon Kagaku Zashi 1985, 9, 1728-1733.
(17) Furysaki, A.; Gasa, S.; Ikeda, R.; Matsumoto, T.; Yasuoka, N.; Matsuura, Y. Bull. Chem. Soc. Jpn. 1981, 54, 1612-1626
NP040012O

[^0]: * To whom correspondence should be addressed. Tel: +86-21-50805853. Fax: +86-21-50807088. E-mail: gwqin@mail.shenc.ac.cn.

[^1]: ${ }^{a}$ In ppm relative to internal TMS run at 400 MHz . Assignments are based on BB, DEPT, HSQC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMBC, and NOESY

